Logic programming is an odd beast. As I lounged around over the holidays I tried to work out how to write a Secret Santa algorithm using core.logic. It seemed like the obvious choice but I quickly realised I’d bitten off more than I could chew.
Simple Secret Santa
Your common or garden Secret Santa consists of putting names in a hat and picking them out again, ensuring you don’t pick yourself. Suitable for offices and other groups of awkward strangers and acquaintances.
We need core.logic
imported, so here’s the namespace declaration
(note that both clojure.core
and clojure.core.logic
define ==
for totally different purposes. I have never used clojure.core/==
so
I’m a bit hazy as to what it’s for  we exclude it so they don’t clash):
1 2 3 4 

We’ll start by defining a relation:
1


This is so that we can constrain values to only those names we’ve defined are santas (otherwise you get weird logic variables and nobody wants to deal with that noise).
Now for the Secret Santa function. It takes a list of friend names (not actually a requirement that they are friends, they may not be after exchanging presents) and returns a list of lists. Each inner list is a pair of giver and receiver of presents.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

If we call it thus:
1


Then we should get the following as a result:
1 2 3 4 

Please note my chronic lack of imagination evidenced by my lazily using characters from Game of Thrones who would likely not be involved in this kind of tomfoolery.
We need a helper function for pairing people up now:
1 2 3 4 5 6 7 

The mindbending nature of that function can be rather confusing. In
core.logic (as with miniKanren and others),
it’s common for an “output
value” to be one of the parameters, in this case the 3rd parameter
(pairs
). This function defines a relationship between the parameters
provided so you can call it with givers
and pairs
and it’ll fill
in the blanks for the receivers
value (effectively unzipping the
pairs
value), which is pretty neat.
Unify what?
It’s crucial to understand the clojure.core.logic/==
unification
function to understand how any of this works. It looks like an
equality test from one of those other programming languages we shall
not mention here, but it isn’t like that. Sometimes I thought of it as
a kind of wishfulthinkingequality  a sort of “wouldn’t it be just
lovely if these things were the same”.
Taking an example from the core.logic wiki:
1 2 3 4 5 

In the above we are asking core.logic for the possible values of q
(the output variable). We start using a new logic variable a
which
we unify with q
using the ==
unification function. That is to say,
all solutions must satisfy the equation a = q
, they must have the
same value. Core.logic tends to add ‘o’ to the end of common function
names so (membero a [1 2 3])
isn’t a boolean predicate function for
testing for list membership, it attempts to make that statement true.
With simply that statement  a
can be 1 or 2 or 3. The next line
asserts that q
is a member of the list [3 4 5]
so its value can be
3 or 4 or 5. The last line unifies a
and q
so they must have the
same value. We can tell that the only crossover between the 2 lists
already mentioned is the value 3, so q
can only be 3. run*
returns
a list of all possible solutions so in fact we will get a single
element list: (3)
as the result from that code.
The input of our Secret Santa function will be a list of names (strings), so it’d be useful to turn that list of names into a database that we can constrain our logic functions on:
1 2 3 

clojure.core.logic.pldb/db
takes a variable number of parameters and
returns a database with those facts contained. We want to call it with
a collection so apply
comes in handy here. Effectively you can use
apply
to turn this: (apply somefn [arg1 arg2 arg3])
into (somefn
arg1 arg2 arg3)
How does it work again?
Let’s concentrate on the core part of the function:
1 2 3 4 5 6 7 

We are asking for all the solutions where every item in the givers
collection is a santa and every item in the receivers
collection is
a santa (lines 3 and 4). This ensures that those collections contain
only valid santa names and not logic variables or numbers or anything
else. There’s something subtle about this  it’s not simply an
assertion. core.logic will make those statements true in every way
they can. One possible version of that (assuming there were 4 names
input to the function) is that givers =
["Arya" "Arya" "Arya" "Arya"]
. That’s nonsensical for our purposes
(remember we mean to zip up these collections so the first giver is
giving to the first receiver, the 2nd giver to the 2nd receiver and so
on). So then we ensure that the collection of givers has distinct
elements in it (line 5), saying the same about receivers on line 6. If
you imagine core.logic has assembled all the combinations of values
that are santas first  imagine now it throws away any where values
repeat. One of the remaining values for givers
will be
[“Arya” “Gregor” “Tommen” “Daenerys”]. There will be more. How many?
Derangements, subfactorials, oh my!
The mathematical name for the number of unique permutations of elements in a set (that are different from their original arrangement) is the number of derangements or the subfactorial.
Roughly speaking, Secret Santa is a special case of finding a derangement of names. When you have 4 names, there are 9 derangements.
Here is some clojure that calculates that:
1 2 3 4 5 6 7 8 9 

This algorithm is primarily useful for checking your results in unit
tests for example. Another way to use it is as the parameter to
run
 you can ask for all the possible derangements of friends. I
didn’t have much luck with that because I misunderstood the values
that my logic code was producing, also there is no need to know
beforehand how many combinations are possible since you only want one.
Further improvements
One weakness of the solutions described above is that they model the relationship between the gift giver and receiver as a binary  allowed or not. It would be useful to be able to first attempt to solve the problem under ideal conditions before falling back to less and less ideal solutions. For example, it’s not ideal to have people paired up symmetrically  it’s just a bit boring that way. It’s more optimal to assign Santas in a circle, which makes it slightly more difficult to identify who’s assigned who.
Finding all possible solutions is extremely slow in core.logic (at least, the way I’ve written it) so this could do with a fair amount of optimisation.
I punted the problem of picking a solution out of possible solutions
to the combination of (map sort)
, distinct
and randnth
. This
isn’t really necessary, I could have told core.logic what constitutes
a distinct solution (it doesn’t realise that order of pairings doesn’t
matter) and then simply picked one. My brain hurt so much by that
point that I decided to call it a day and move on to more interesting
problems, like
Final thoughts
I had a great deal of difficulty writing the pairupo
function,
largely because all the various defne
/defnu
/defna
confused me 
I still couldn’t tell you what they do. This was partly due to me
moving from a real problem (Secret Santa) to the implementation in
core.logic on the basis of sketchy logic programming knowledge, so I
missed a lot of subtlety related to conde
which is crucial for
understanding this stuff. The official documentaion for core.logic is
extremely sparse also, you are very much on your own if the problem
you want to solve isn’t Sudoku or the Typed Lambda Calculus (it
boggles my mind that that is on the
Examples
wiki page, I’m not sure if the intention is to educate or
obfuscate there).
I hope that a bit more blogging from mere mortals like myself might help others grok this mindmending area of programming.